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into the expressions for AW, and M.x from (L.19) and (1.21),

We note that the results obtained here can be applied to a fairly large number of contact
and mixed problems of elasticity theory as well as to modified mixed problems of mathematical
physics. The need to tabulate the functions S§%®(z,0) 0 <z <o) and GE, (arccosz){{z]<1) arises
here; this can be achieved by using continued fractions /10-12/.
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ASYMPTOTIC SOLUTION OF THREE-DIMENSIONAL PROBLEMS OF THE
THEORY OF ELASTICITY OF EXTENDED PLANE SEPARATION CRACKS®

R.V. GOL'DSHTEIN, A.V. KAPTSOV, and L.B. KOREL'SHTEIN

A solution of three-~dimensional elasticity theory problems for separation
cracks occupying a plane domain with one characteristic dimension much
smaller than the other is constructed by the method of matched asymptotic
expansions (cracks that are extended along a certain plane curve). The
appropriate terms of the expansion of the solution in a small parameter
characterizing the extent of the crack are constructed using an integro-
differential equation in the displacement of points of the crack surface.

For cracks that are extended along a line, the representation of the integro-
differential equation in terms of a two-dimensional Fouriexr transform is
used, which substantially simplifies the calculation. In the general case,
the expansion is executed directly in the equation written in z-space.

The asymptotic expansion constructed is valid in the middle part of the

#*prikl.Matem,Mekhan.,Vol.48,5,854~-863,1984
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crack, outside of certain small neighbourhoods of the ends of the curve
along which the crack is drawn. The accuracy of the solution obtained is
analysed, and formulas are presented for the crack aperture and the
distribution of the stress intensity factors for specific kinds of cracks:
cracks of elliptical planform, a ring and ring sector, crescents, bounded
by parabolic arcs, narrow crescent domains, extended along a parabolic

s mmmmaviann A8 +tha rasult+e with avigting sglutions of 2llintical
arc, etc. A Comparison OI TAe IeSuU.TS Wilda €XASTANG SCLulilnsS ©OI So.iplild.

and annular cracks, as well as with numerical solutions constructed
specially by a variational-difference method for cracks of different

R ] PR, 2 Lol oo A

shape demonstrates the high efficiency of the asymptotic formulas cbtained

1. Rectilinear extended crack, we consider a homogeneous isotropic medium with
a crack occupying the domain G in the z = 0 plane. Oppositely directed normal forces

6t (2, 4, 0) =0, (2, 4, 0) = —p (& p) <
O (z, ¥, 0) = 0y (z, ¥, 0) =0, (z, u)EG

are applied to the crack surfaces (the superscripts plus and minus correspond to the upper
and lower crack edges). There is no load at infinity. Then /1-3/, the tangential components
of the displacement of the crack surfaces are continuous

ut (2, ¥, 0) = u,~ (z, y, 0), u'v+ (z, Y 0= u;” @y 0, @ =6
and we have for the normal components of the displacement

uz+ (v, 0) = —u," (z, Y, 0) =Uu (.‘L‘, y) >0, (xv y) e6

Determination of the displacement of separation crack surfaces reduces to seeking a
bounded function u (r, y) that equals zero outside the domain G and satisfies the following
integro-differential equation for (z,y)EG

8y SSMW@E—MW =y @y E6 (1.9)
G

=@—2P+@—y b=pd -V

Here p and v are, respectively, the shear modulus and Poisson's ratio of the medium,
and A,y is the two-dimensional Laplace operator.
Equation (1.l) can be written in the form

Po(Fo[VEITE ) su(z )y =Pp(z.y) (@p) 6 1.2

where F,, is the Fourier transform

P; is the operator of the constraint on the domain G and the functions in (1. 2) are
understood in the generalized sense ues 8§ (RY), Vid+ §, eSS A, pe=sS &, F
S’ (R%), Pg:8' (R®)—~ & (G, l4)).

Let the crack occupy a domain G (¢) of the following form (Fig. 1): |z | <L, |y]| < ep (2),
where L >0, the function p (z) is bounded and ¢ (z)& C*(—L, L), p >0 and the dimen-
sionless parameter &> 0. For small & we obtain a narrow crack stretched along the Oz
axis. The problem is to determine the asymptotic of the edge displacements u (z,y,e) (cor-
responding to the crack G (g)) as e—0.

We introduce the internal coordinate Y = gy, Then the crack will occupy a constant
domain G: |z} L, |[Y|<p(x) in the z,Y coordinates. In the Fourier transforms {y = e,
corresponds to the coordinate Y; hence }

Foy 1 8" (H) >

PR IVE TR = [V + 5P|, F=Fuy (1.3)

Substituting (l.3) into (l1.2) and taking into account that the convolution is reduced
¢ times in the new (z, Y) coordinates, we obtain.

Po{F VT T & su(z, V.e)=ePp (z,V,e), (1Y) EG (1.4)

We find the asymptotic F7'[y'e?E,® + Ey?] as a generalized functions as e— 0. The
following asymptotic forms are derived directly from the definition of the generalized
functions by standard methods of regularizing integrals:
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@LF + B = o) M= br e = P g+l )
B (0 + B |+ 582 [ P oy + 20 () — 20 -ote?)

1 X dE, &t
(Preeye) =N totetn —oc—1erh o 6o o1 -
? R br) =S (RY)

We hence have

VEET + i = (e%,? + br?) (8% + §r?)"o== | B | + Y2282 [8 (By) + ] + o () (1.5)
Since /4/

Y - 8" (z)
&) FlEel] I v F ‘[Ex*ﬁ(Er)]==-—§—
ol S )=

Fig. 1

rltwlnm|&<ay)1= -= [vé’(z) + 1 g Py |

where y is Euler's constant, then because of the continuity of the operator F-t: 8" (A% — S’
(R?), formula (1.4) can be written in the form

Pg{[®, + e?1n (2/e) 8" (z) + e*®3 4 o (e)] e u (2, Y. e)= — 2nflep (2,7, ¢) (1.6)
o= — 208 (2) 5 P4

O =L —& @Y |+ g Prir

Let p(z, Y, &) have the following asymptotic

P Yio = 3 6p(nY) +olh PupumEC@

Then it is natural to seek the asymptotic form u (z, Y, &) in the following form that
results from comparing the asymptotic expansions of the right and left sides in (1.6):

u(E,V,e)=e{u (@ Y) +eun@Y)+eln /v Y) +
Suy (z, V)+wiz, Y, &)}

The third component in the braces is necessary to cancel the term of order &’lne gen-
erated by the corresponding logarithmic term in the asymptotic expansion of the kernel in
(1.6).

The supports of .all the functions here lie in Gj u,(z, ¥} is a regular bounded continuocus
function, the functions u, u,, v are regular and continuous in any closed domain not containing
the ends G (z =2L); w(z,Y,e) =0(1) (not o(e*) because of the possible boundaxry layers
at the ends of G whose area tends to zero, -in which the quantity & u(z, Y, &) —u,(z, Y) is
bounded) and w (z, Y, €) = o (e®) in any closed domain not containing the ends G.

We will find U, 4, U, ¥ in the middle part of G (in any of its closed subdomains not
containing the ends). We note that because of the continuity of the convolution operation in
S’ (R?) as well as because the support of the function @, and &8" (z) is the line z = 0 in the
middle part of the crack, we have

Dysw(z,Y,e) =0, 2Qprw(z, Y, e)=0 (e?)
eln2/e)d" @ew Y, &) =o (e

Consequently, equating texrms of identical order in (1.,6), we obtain in the middle part
of the crack

D, * up = —21Pp,y, Dy # uy = —218py, Dp+uy = 1.7
—2afp, — Py » 4y
o(x)
(Do.u=——6"(z)¢uo=——;-‘:—,- S uo(z,Y)dY
—p(x)
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Equations (1.7) can be considered as equalities of continuous functions. For any fixed
z e (—L, L) each is {as should be expected) an equation of the plane problem of a rectilinear
crack of normal separation (with a certain force distribution along the edges) and all the

equations can be solved successively in quadratures /1,5/.
We present the explicit version of the asymptotic form for p(z, Y, &) = p==const. In

this case we obtain from (1.7)
p=ps =0, u =0 u =gq v=ygf/d
wa="g {2 + @l 2)f — (1nf) + 5 Tofp =
g {2+ 2)F + (69 + -5 T4}

f=1@)=p*2)0 (1 —|2/L]) ‘
4=0(@Y)=BpVF@—T7, R=0(z) =l

Tz =] E=r)

L E
Ti= S L@ ZFE) gor pofee g [ =80 —o—21){(z) 3o
—~L —o0

and finally
u(z, Y, &) =egQ + o (% (1.8)
Q=0 Y, e) =1+ (Y)e* [2In (4/ &) " + 2" + (fQ)" + & (Tf) / da®]

If the function J’ (z) is integrable in [~—L, L] and " {2) = C*(—L, L), and j and [ are
bounded in [~L,L], then (1.8) can be represented in a somewhat different form. In fact, for
ze(—L, L)

L ri=25 [PTiwa(x)] =
Prslf +1 (=08 +L—f DdE—I)+
H=D)¥ @+ D —[L)¥ (z —L)]

where f” is the derivative understood in the ordinary (not generalized) sense. Hence, for
r & (—L, L)

Pt v Tr=— DL — 2 = (— D)L+ 2 — (1.9)
PO EL—27 4 f (= L)L+ =)+ Tof”

Q=1+ () 2ln(4/e) "+ 2f" + ' In (L* — %) +
T — (flu /) — f (DL — o) — f (—L)(L + 2" +
£ O =2 —f (—DL + 2™

We note that when using (1.9) for Q the single difficulty is evaluation of the integral
Tf" therein. 1In a number of cases (Sec. 3), this integral is found analytically, and in
the general case numerically, It is here convenient to utilize the properties of the operator
T established in /6/, For the stress intensity factors N at the crack edge at the points
{z, 4ep (z)) (for z < (—L, L)) we obtain from (1.8)

N=pVe x)/ 211 + 2t (D)1 1Q + o (&)

2, Curved extended crack. We now consider the more general case of a crack
stretched along a certain smooth curve, given in the-plane z = 0, without selfreentrances
R({),!lel—L,L] (it can even be closed R(L)= R {(—L)) of length 2L, where ! is its natural
parameter (the distance along the curve from its midpoint along the length)., Then

dR()dl =<(), n(l) =e, X 1 () 1)
dr ()/dl = —k () n (1), dn()/dl=k(})r ()

where 1 {l) and n (!) are the tangential and normal directions to the curve, k (I) is its curvature
at the point R (l) (positive or negative). We introduce the coordinates (I, m)} in the z =20

plane
x({, m)=R )+ emp ()n () 2.2)

(the conditions on p(l) are the same as in Sec. 1). Then the domain of the crack G-(g) is
given by the inequalities [!|<L,{m|<1 (Fig. 2). As in Sec. 1, the problem is to determine
the asymptotic of the displacement u(l, m, &) as e-»0. The Jacobian of the mapping given in
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(2.2) equals

D(l, m)=|0(z y)/3( m)|= (2.3
ep (H 11 + emp () & (W]

and we write (1.l) in the domain G (8) in the following
form, taking (2,1),(2.2) and (2.3) into account:

n(l)

L3
ZI 7 . , ,
Ast S 8 *::,E)D(I,m’}dl dm’ = — 2afp (I, m, &) (2.9
“L Tax]
Here (compare /7/)

Aey® (1 m)= "% |01 + [e7%p™2- 2.5)
mip Pt Glp | Om® —
2mp’p" 2 / 3lIm — empk'w~3p | 81 4
[e7p™ ™k + m (20" — pp”) p™x™% 4 emp'k'n"?) dg / Im
Fig.2 % =1+ empk, Ax =x (', m') — x (I, m)

As in Sec. 1, the asymptotic form of the operator

K,=A,,§ i e f;;”‘") D, m)dl dm’
L4
must ls.’»e found to obtain the asymptotic of the function u (l, m, &) from (2.4).
e Ko = ?zﬁl [eH (pp) + e*H {gmp’k)] (2.6)
Hp= §L _Sl RO aram
because of (2.3), it is sufficient to find the asymptotic form of the operator H and then to

use relationship (2,6).
Let the function @ be fairly smooth, then

% L 1
Hp=1J (1 m)+ Z‘I*(t,m), T (lym)= S S n—“’;rdz'dm' @1
Here = —L=
2 ; )
=y m Lm) =g, m)— Yo - 28, m) (Al {2.8)
-y

=0[ Al as "I

\J

1 N
I (bm)= S Til_%%a' m') Js (m', 1, m) dm’ (2.9)
-1

L i
J;(m’,l,m)-—-:% IA” ar
L

x|

According to (2.2)

JAR[t = A7 3, BA e — 1A M3 43 BAA e} 40 (2) (2.10)
A=A, )= (ARp

B=B({', m, I, m) = 2 (AR) A (mpn)

cC=Cc, m', I, m)=IA (mpu)*

Substituting (2.10) into the second formula in (2.7), we obtain the asymptotic form of
the integral J. It is impossible to find the asymptotic form of the integrals J; by using
only the asymptotic form (2.10) for the integrands, since the terms in the expansion (2.10)
become infinite for [I'=1 and the corresponding integrals in (2.9) will diverge. To cbtain
the asymptotic forms of J; it is necessary to replace the integrands by ‘their composite
asymptotic expansion /7~10/, which is the sum of the internal (for small [’ — I) and external
{obtained from (2.10) and corresponding to the original coordinates) asymptotic expansions
diminished by the common part with the internal asymptotic expansion. As a result of calcula-
tions, taking (2.7) and (2.10) into account, we obtain the following asymptotic form of the
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operator H:

Ho= S [F{)|AR[? — F ()| AL “l]dl'+F(l)ln?F,»— (2.11)
L

1 L 1
2 quinjamldm — 5 § § (BIARD o —n |41t g x
-1

L =1

dl'dm’ ¢ S Qoada dm’ '——‘ g S {C|AR 3¢, —
~1 “L

he | AL (@1 — ¥) — mf ALJALL™ (o + ¢'AD) —
(m'2 % m'my® + hypp” 1/,,x,;) [Al ["ipo} 4l dm’ 4

S @hy (L — A) dm’ + 3y S ﬂ (B? |AR[ g, — x:2 AL o} X
i i §
b

al dm' + ¢ S ¢ (halg™ -+ haf' Ay dm’ +

-l
1

e { go{gh (L + 17+ hflg +uuns (5—38) +
-1

1y (m™p™ + m'my® + hipp") AL+ —g‘ YA — Xx’} dm’ + o (e%)

Here

1
FO=(o@ mdm, x=pQk® =0 +my %=

(Ampy?, g=1L'—B, A=Inldg/(h)l, A =1—A/2, b =
m’ (Am), by = (Am)p*, o =9 (L, m’), ¢1 = @ (', m'), " = d¢ (I, m’} /dl
g0 H T
are taken from the argument I
Making the same assumptions about the form of the asymptotic forms p(l, m, e) and u(l, m,

g} as in Sec. 1, by taking account of (2.12),(2.6},(2.5) and (2,4}, we can obtain integro-
differential equations for e (!, m), u, (I, m), u, (i, m), v(l, m), that generalize (1.7). To
do this it is sufficient to show that the contribution of the remainder term ew (I, m,e) con-
taining the boundary layer at the ends has a lower order on the left side of (2.4) than the
contribution of the other terms of the asymptotic form u(l,m,e). But this follows from the
fact that the boundary layer contribution wu; {(z,y,8) at the ends of G {e} in the left side of

{1.1) equals
Awi§ u (2, ¥, 8) dx’ dy’ =o(e?)

r

where 6§ is the domain of boundary layer action with dimension e (g} (the longitudinal
dimension o (1), the transverse O (e)), and (z,y) lies in the middle part of the crack and
does not belong to &S, uy (z, y, &) = O {e). The equations for ug, Uy, Uy, v reduce to the form

PP (ug) / IM? = nfip,, 20°P (u,) | OM?® = 2nPp; —kdP (uy) | OM (2.12)
28%P (vin(2/e) 4 us)/OM? = 25Bpy — kAP (ua)/oM + I (Uy) +

11432 [Us In (4g £72)]/012 — GAP (mo)/0l2 — 82UoJ012 +

Hek*Uo Ln (4ge™) + K2MEP (uo)/OM — 2P (o) 4 /1%,

o)
M=p@®m U= \ uoll, MyaM

~p{)
L

2
U(l) 1 Rk} &' i
109 = § {1ip —7arF XS O @'~

50
FETFOUs®}dl, Po)= § o, M)In|M — M'|dM’
-p(l)
For p{l, m, &) = p = const, we obtain from (2,12)
alom )= VT=mQlme) +oleh) @.13)
QUume)=1— L ymt 3 (r 4+ L)t 220D
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Pl ] 2
TR — - — 51+ aatytmt + -1 (f)
and the stress intensity factor at the points (I, =ep (I)) equals

Ni=pVep@/Z (1 £ ex) + 2T (1 2 o)X [Q (b = 118) + o (e)] (214

3. Examples. We present the explicit form of the asymptotic forms obtained from
Secs, land 2 for cracks of different shape for p(z, y, & = p == const, and we compare the
results with exact or numerical solutions.
1°, An elliptical crack

p@) =VIT—2%, Q=1— e (In (&e) ~ Yy

The exact solution has the form ([il): u(z,Y,e) =eq/E (Y1 — &) and the first terme of
its agymptotic being considered agree with those obtained. Graphs of Q (e) (curve 1) and 1/
E(Y1 —¢') (curve 2) are shown in Fig. 3. 'The accuracy of the asymptotic formulas (1.8)
and (1.10) is of the order of 3%even for & =05, and is fractions of a percent for &< 0,25,
2°, A crack bounded by parabolic arcs:
p@)=L{A —2%/ L%
Q =1+ (M) {(3\* — 1) In [16e™® (1 — AZ)Y] — 10A% 4 2} &*
=zl L
The change in the intensity factor along the crack boundary is shown in Figs. 4a.and b
(s is the distance from the middle along the boundary) for p=1, L =¢* =4 (Fig. 4a), and
L=¢!'=6 (Fig. 4b; curve 1 is obtained by using the asymptotic formula (1.10) and curve
2 by using the formula N, = pV'ep_?:?- {1 4+ &%"*M (corresponding to the plane problem approx-
imation), and curve 3 numerically*. The discrepancy does not exceed 1 ~ 3% near the middle
part of the crack,
3°. Crack in the shape of a generalized ellipse: p(z) =L —z*/ L, 3 >0
For z = 0 (on the axis of crack symmetry)

Q=1—Yetlln(16e%) —1 —~ " Q) /T ) — ¥l

/N,
207

NN,
107 6\

0.8 “\\\\

Mp 24 22 &
Fig.3
0.7
N S~ 7 L=4
3 S~
. N,
8.5 S
~{wnt
s
~
&
J& H Z J &
a
Fig.4

*The numerical solutions of the crack problems used for comparison in Examples 2~6 are
constructed in the paper by Gol'dshtein, R.V., Otroshchenko, I.V., and Fedorenko, R.P.,
Method of refining boundary meshes in three-dimensional crack theory problems. Preprint,
Institute of Mechanics Problems, USSR Academy of Sciences, No. 239, Moscow, 1984,
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Given in the table are numerical (in parentheses) and asymptotic values of the intensity
factor for [ =1, and [ =3, (referred to the intensity factor for the plane problem No).

e =1/, £=1/q
" L= 0.954 (0,948) 0,977 (0.969)
L=2 0.908 (0.905) 0.950 (0.948)
0.941 (0/919) 0.950 (0926
m= v B . .
,‘g B=a3 4 1.066 %1.018) 1,082 Eo.s'ze)
—np M= 0.950 {0.919) 0.973 (0,819)
% = m=—1 1.076 (1.047) 1.085 (0,990
e =1y e =1,
5 m=1 0.882 (0.843) 0,946 (0,919)
m=—1 1.04% (0.863) 1.030 (1,082

4°. crack in the shape of an annular sector. The line R (I} has the shape of an arc of
a circle of radius R of length 2L = 2a,R, 0<a, <=z, p{l)=R, y=1. 1In this case

Q= 1—1/em 4 — ;’2 [ln (2568" tg 5~ L tg ——-) - COS €ty Ctg Oy —

005“30‘33“3*—3-{—6”!2] , “‘-‘T’ o= “"2 z, m,=°'£jz’-9-
In the case of an annular crack (@, = xn, inner radius R, = (1 — e) R, and outer radius
=({+eR)
Q =1 — 0,25em -+ ¢* [In (256¢7%) -— 3 + 6m?} / 32 3.1)

and the asymptotic form (2.14) agrees with /11/. Given in Fig, 5 is the dependence of N./ N,
on the ratio R,/ R, determined numerically (by using data in /12/, curves 1 and 2), and by the
asymptotic formulas (curves 3 and 4). For R,/R, =005, the error is 1 -~ 2%, while for
R;/ R, >0.7 it is fractions of a percent. The intensity factors N4/ N, for the annular
sector are presented in the table.

5. “Banana-shaped" crack. The line R (}) has the form of a semicircle of radius R
and p(l) = Yeosa, @ = U/R (Fig. 6).

We have

Q=1—1/‘3Vcosam——;;— [30030:11:(—‘2515 tg%‘-tg%/cosa) —
5cose 4 4sinetga— 6m?cosa + cos o (cos oy ctg oy -+
cosus cig ag) + 4sina (sin™ ay — sin™ ay)}
n—2a o n+20

al=.-—4—-’ g ==

The intensity factor N4 is in the table for a = 0 {on the axis of symmetry).
6°. A constant width crack stretched along the arc of a parabola, The line R O is
given parametrically: =z=ga,y =aa’/2, |a|<< 2 ¢ >0 (¢ has the meaning of the focal
parameter of the parabola): p () = a = const. For !=a =( (at the parabola vertex)
=1 and

& Q(U,m,z)—.i—ll‘em +Tln———+—a + 5= e=+—§-s'm3—

gz[ 2“1—1-%]

24%

R

14 aed ae==V 4+ c?
Fig. 6
The case a¢-—+ o0 corresponds to an infinite crack of constant width stretched along a

parabola. The quantity Q (0, m, €) here differs from the value of (3.1) by an amount (/16 €°
In3, i.e., the values of the intensity factor N, are not much less than for an annular
crack with the same local characteristics (width and curvature),
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STATIONARY MOTIONS OF A GYROSTAT WITH AN ELASTIC
ANNULAR PLATE AND THEIR STABILITY*

M.K. NABIULLIN

Using Rumyantsev methods /1-3/ in the Xuz'min form /4/, stationary
motions are deduced for a gyrostat with a circular annular plate clamped
by the inner contour in a housing, and sufficient conditions are obtained
for their stability. The paper touches on a cycle of papers devoted to
investigating the stability of systems with distributed parameters:
elastic rods, flexible rectangular plates, and a flexible string /5-19/.

1, We introduce the following coordinate system: Czzz, is the orbital system with
origin at the centre of mass of the mechanical system for the plate state of strain, the
Cz, axis is along the orbit radius, the (s, axis is perpendicular to the orbit plane, and
the axis Cz, is orthogonal to the Cz, Cz; axes; Ozyz is the coordinate system coupled
rigidly to the gyrostat housing whose axes are directed along the principal central axes
constructed for the centre of mass O of the system for the undeformed state of the plate;
Chays 1S the coordinate system whose y, axes (s=1,2,3) are parallel to the 2y, z axes,
respectively,

We will define the gyrostat location in the orbital coordinate system by the Euler angles
b, 0, 9 and the direction of the 1, axes (s==1,2,: with respect to the axes of the system
Cyryaly by the direction cosines a,, 2, 2,; that depend in a known manner on the angles
vy, 9,9, for instance, a, = sin@sin8{20].

We will define the location of points of the plate in the deformed state with respect to
the gyrostat housing by a radius-vector whose projections on the axes are

rx = (8 + r) o8 A ~ ziy, ry={a-4r)sinkh — su; [ )
re® 2+ w (uy = wpcosh—(atrtwsink, uy= wesinh + (a4 r)"twy cosh)

Here « is the radius of the inner circular contour of the middle plane located in the
Ozy plane, a-+4r Az are cylindrical coordinates of an arbitrary point of the plate in the
undeformed state, wi{r, % & 18 the projection of the elastic displacement vector of an arbitrary
point of the middle plane on the z~axis, and the letter subscripts on the quantity w denote
first~order partial derivatives with respect to the variable indicated in the subscript.
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